Cart (Loading....) | Create Account
Close category search window
 

Performance optimizations for PatchMatch-based pixel-level multiview inpainting

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Shao-Ping Lu ; Dept. of Electron. & Inf., Vrije Univ. Brussel, Brussels, Belgium ; Ceulemans, B. ; Munteanu, A. ; Schelkens, P.

As 3D content is becoming ubiquitous in today's media landscape, there is a rising interest for 3D displays that do not demand wearing special headgear in order to experience the 3D effect. Autostereoscopic displays realize this by providing multiple different views of the same scene. It is however unfeasible to record, store or transmit the amount of data that such displays require. Therefore there is a strong need for real-time solutions that can generate multiple extra viewpoints from a limited set of originally recorded views. The main difficulty in current solutions is that the synthesized views contain disocclusion holes where the pixel values are unknown. In order to seamlessly fill-in these holes, inpainting techniques are being used. In this work we consider a depth-based pixel-level inpainting system for multiview video. The employed technique operates in a multi-scale fashion, fills in the disocclusion holes on a pixel-per-pixel basis and computes approximate Nearest Neighbor Fields (NNF) to identify pixel correspondences. To this end, we employ a multi-scale variation on the well-known PatchMatch algorithm followed by a refinement step to escape from local minima in the matching-cost function. In this paper we analyze the performance of different cost functions and search methods within our existing inpainting framework.

Published in:

3D Imaging (IC3D), 2013 International Conference on

Date of Conference:

3-5 Dec. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.