By Topic

Maximum Power from PV Arrays Using a Fixed Configuration Under Different Shading Conditions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Srinivasa Rao, P. ; Dept. of Electr. & Electron. Eng., Nat. Inst. of Technol., Tiruchirappalli, India ; Saravana Ilango, G. ; Nagamani, C.

A major challenge in photovoltaic (PV) systems is making them energy efficient. One of the major factors that contribute to the reduction of PV power is partial shading. The reduction in power depends on module interconnection scheme and shading pattern. Different interconnection schemes are used to reduce the losses caused by partial shading. This paper presents a fixed interconnection scheme for PV arrays that enhances the PV power under different shading conditions. The proposed scheme facilitates distribution of the effect of shading over the entire array thereby reducing the mismatch losses caused by partial shading. The performance of the system is investigated for different shading conditions and the MATLAB/SIMULINK results are presented to show that the power extracted from the PV arrays under partial shading conditions is improved. Experimental results are provided to validate the proposed approach using a laboratory experimental setup. A comparison is also made between the electrical array reconfiguration scheme and the proposed scheme for a 5 × 5 PV array.

Published in:

Photovoltaics, IEEE Journal of  (Volume:4 ,  Issue: 2 )