By Topic

The Sparse Principal Component of a Constant-Rank Matrix

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Asteris, M. ; Dept. of Electr. & Comput. Eng., Univ. of Texas at Austin, Austin, TX, USA ; Papailiopoulos, D.S. ; Karystinos, G.N.

The computation of the sparse principal component of a matrix is equivalent to the identification of its principal submatrix with the largest maximum eigenvalue. Finding this optimal submatrix is what renders the problem NP-hard. In this paper, we prove that, if the matrix is positive semidefinite and its rank is constant, then its sparse principal component is polynomially computable. Our proof utilizes the auxiliary unit vector technique that has been recently developed to identify problems that are polynomially solvable. In addition, we use this technique to design an algorithm which, for any sparsity value, computes the sparse principal component with complexity O(ND+1), where N and D are the matrix size and rank, respectively. Our algorithm is fully parallelizable and memory efficient.

Published in:

Information Theory, IEEE Transactions on  (Volume:60 ,  Issue: 4 )