Cart (Loading....) | Create Account
Close category search window

Phase Noise of the Radio Frequency (RF) Beatnote Generated by a Dual-Frequency VECSEL

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
De, S. ; Lab. Aime Cotton, Univ. Paris Sud 11, Orsay, France ; El Amili, A. ; Fsaifes, I. ; Pillet, G.
more authors

We analyze, both theoretically and experimentally, the phase noise of the radio frequency (RF) beatnote generated by optical mixing of two orthogonally polarized modes in an optically pumped dual-frequency vertical external cavity surface emitting laser (VECSEL). The characteristics of the RF phase noise within the frequency range of 10 kHz-50 MHz are investigated for three different nonlinear coupling strengths between the two lasing modes. In the theoretical model, we consider two different physical mechanisms responsible for the RF phase noise. In the low frequency domain (typically below 500 kHz), the dominant contribution to the RF phase noise is shown to come from the thermal fluctuations of the semiconductor active medium induced by pump intensity fluctuations. However, in the higher frequency domain (typically above 500 kHz), the main source of RF phase noise is shown to be the pump intensity fluctuations which are transferred to the intensity noises of the two lasing modes and then to the phase noise via the large Henry factor of the semiconductor gain medium. For this latter mechanism, the nonlinear coupling strength between the two lasing modes is shown to play an important role in the value of the RF phase noise. All experimental results are shown to be in good agreement with theory.

Published in:

Lightwave Technology, Journal of  (Volume:32 ,  Issue: 7 )

Date of Publication:

April1, 2014

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.