Cart (Loading....) | Create Account
Close category search window

Flexible Thin-Film Tandem Solar Cells With >30% Efficiency

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Kayes, B.M. ; Alta Devices, Sunnyvale, CA, USA ; Ling Zhang ; Twist, R. ; I-Kang Ding
more authors

Alta Devices, Inc. has previously reported on single-junction thin-film GaAs photovoltaic devices on flexible substrates with efficiencies up to 28.8% under AM1.5G solar illumination at 1-sun intensity. Here, we show that the same technology platform can be extended to tandem devices that are capable of even higher efficiencies: so far up to 30.8%. Specifically, here, we report on a lattice-matched, series-connected, two-junction device with InGaP as the light-absorbing material of the top cell and GaAs as the absorber in the bottom cell. The material is grown by metallorganic chemical vapor deposition, and then, the device is lifted off by the epitaxial liftoff (ELO) process, as previously reported. This demonstrates that ELO is not only capable of record-setting single-junction performance but capable of achieving world-class efficiency with a multijunction architecture as well.

Published in:

Photovoltaics, IEEE Journal of  (Volume:4 ,  Issue: 2 )

Date of Publication:

March 2014

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.