Cart (Loading....) | Create Account
Close category search window

SPICE Network Simulation to Calculate Thermal Runaway in III–V Solar Cells in CPV Modules

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Steiner, M. ; Fraunhofer Inst. for Solar Energy Syst. ISE, Freiburg, Germany ; Siefer, G. ; Bett, A.W.

Current injection into solar cells may occur if cells in modules are connected in parallel without the protection of string diodes. This current injection can cause heating of the cell, which increases the recombination currents and, thus, the current injection. In this manner, a self-feeding process called thermal runaway is started. In concentrator photovoltaics modules, thermal runaway can cause substantial damage. In this paper, a model is introduced that calculates the conditions causing thermal runaway. This model is based on the two-diode model. As inputs for the model, three dependences were experimentally determined from dark IV measurements on the triple-junction cell: 1) series resistance on cell temperature, 2) saturation currents for each of the three junctions on cell temperature, and 3) cell temperature on the injected current. The model was tested by comparing the simulated and measured temperature increase in a triple-junction cell and their dependencies on the applied voltage. A reasonable agreement between the experiment and model was found whereby the voltage at which a thermal runaway occurred differs slightly by 0.04 V. The model was then applied to estimate the dependence of an expected temperature increase in a shaded solar cell on the number of cells connected in parallel and on the concentration factor of the sunlight.

Published in:

Photovoltaics, IEEE Journal of  (Volume:4 ,  Issue: 2 )

Date of Publication:

March 2014

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.