By Topic

Progressive Image Denoising Through Hybrid Graph Laplacian Regularization: A Unified Framework

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xianming Liu ; Sch. of Comput. Sci. & Technol., Harbin Inst. of Technol., Harbin, China ; Deming Zhai ; Debin Zhao ; Guangtao Zhai
more authors

Recovering images from corrupted observations is necessary for many real-world applications. In this paper, we propose a unified framework to perform progressive image recovery based on hybrid graph Laplacian regularized regression. We first construct a multiscale representation of the target image by Laplacian pyramid, then progressively recover the degraded image in the scale space from coarse to fine so that the sharp edges and texture can be eventually recovered. On one hand, within each scale, a graph Laplacian regularization model represented by implicit kernel is learned, which simultaneously minimizes the least square error on the measured samples and preserves the geometrical structure of the image data space. In this procedure, the intrinsic manifold structure is explicitly considered using both measured and unmeasured samples, and the nonlocal self-similarity property is utilized as a fruitful resource for abstracting a priori knowledge of the images. On the other hand, between two successive scales, the proposed model is extended to a projected high-dimensional feature space through explicit kernel mapping to describe the interscale correlation, in which the local structure regularity is learned and propagated from coarser to finer scales. In this way, the proposed algorithm gradually recovers more and more image details and edges, which could not been recovered in previous scale. We test our algorithm on one typical image recovery task: impulse noise removal. Experimental results on benchmark test images demonstrate that the proposed method achieves better performance than state-of-the-art algorithms.

Published in:

Image Processing, IEEE Transactions on  (Volume:23 ,  Issue: 4 )