By Topic

Natural Gaits for Multilink Mechanical Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Md Nurul Islam ; Sch. of Electr. Eng. & Comput. Sci., Univ. of Newcastle, Newcastle, NSW, Australia ; Zhiyong Chen

Typical animal locomotion is achieved by the rhythmical undulation of its body segments while interacting with its environment. It inspires the mechanical design of multilink locomotors. With different postures, a multilink system may present different locomotion gaits. Recently, a so-called natural oscillation gait was studied for multilink systems, and a class of biologically inspired controllers was designed for the achievement of the gait. In this paper, the theoretical design is experimentally applied on a mechanical multilink testbed of two posture configurations in rayfish-like flapping-wing motion and snake-like serpentine motion. The effectiveness of the design is cross examined by theoretical analysis, numerical simulation, and experiments.

Published in:

IEEE Transactions on Robotics  (Volume:30 ,  Issue: 3 )