By Topic

Temperature Dependence of the Spontaneous Emission Factor in Subwavelength Semiconductor Lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Smalley, J.S.T. ; Univ. of California, San Diego, La Jolla, CA, USA ; Qing Gu ; Fainman, Y.

We perform a rigorous analysis of the temperature dependence of the spontaneous emission factor, β, in subwavelength semiconductor lasers. The analysis combines a recent formulation of the Purcell effect in semiconductor nanolasers with finite-element modeling and established theoretical models for temperature-dependent emission spectra. While the method is general, we apply it to a subwavelength metallo-dielectric nanolaser, and find that β of the dominant mode decreases sharply below a transition temperature. This result is found for both positive and negative thermo-optic coefficients of the semiconductor material, and occurs because of detuning between the dominant mode and peak emission. The analysis enables better understanding of nanolaser dynamics, as well as the design and characterization of high-β nanolasers.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:50 ,  Issue: 3 )