Cart (Loading....) | Create Account
Close category search window
 

A Unified Data Embedding and Scrambling Method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rad, R.M. ; Fac. of Comput. Sci. & Inf. Technol., Univ. of Malaya, Kuala Lumpur, Malaysia ; KokSheik Wong ; Jing-Ming Guo

Conventionally, data embedding techniques aim at maintaining high-output image quality so that the difference between the original and the embedded images is imperceptible to the naked eye. Recently, as a new trend, some researchers exploited reversible data embedding techniques to deliberately degrade image quality to a desirable level of distortion. In this paper, a unified data embedding-scrambling technique called UES is proposed to achieve two objectives simultaneously, namely, high payload and adaptive scalable quality degradation. First, a pixel intensity value prediction method called checkerboard-based prediction is proposed to accurately predict 75% of the pixels in the image based on the information obtained from 25% of the image. Then, the locations of the predicted pixels are vacated to embed information while degrading the image quality. Given a desirable quality (quantified in SSIM) for the output image, UES guides the embedding-scrambling algorithm to handle the exact number of pixels, i.e., the perceptual quality of the embedded-scrambled image can be controlled. In addition, the prediction errors are stored at a predetermined precision using the structure side information to perfectly reconstruct or approximate the original image. In particular, given a desirable SSIM value, the precision of the stored prediction errors can be adjusted to control the perceptual quality of the reconstructed image. Experimental results confirmed that UES is able to perfectly reconstruct or approximate the original image with SSIM value after completely degrading its perceptual quality while embedding at 7.001 bpp on average.

Published in:

Image Processing, IEEE Transactions on  (Volume:23 ,  Issue: 4 )

Date of Publication:

April 2014

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.