By Topic

Design of an inherently safe worm-like robot

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Martin Eder ; Fac. of Inf., Robot. & Embedded Syst., Tech. Univ. Munchen, Garching, Germany ; Maximilian Karl ; Felix Schultheiß ; Johannes Schürmann
more authors

Nowadays robots are disseminated more and more in fields where humans are in the loop. These collaborative modes are always characterized by safety issues, in particular problems regarding compliance in case of contact. Our approach to solve these problems is based on passive compliance, which means that an inherently flexible robotic mechanism is designed driven by pneumatic artificial muscles (PAM). Compared to state of the art robots the novelty here is a completely modular and decentralized setup in terms of both mechanical and control architecture. Main benefit of this new design is expandability and increased precision. This paper presents the design and control of a robot of this kind with 3 segments or rather 6 degrees of freedom (DOF), which proves the novel concept.

Published in:

2013 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)

Date of Conference:

21-26 Oct. 2013