Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Toward smarter healthcare: Anonymizing medical data to support research studies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gkoulalas-Divanis, A. ; IBM Research Division, Ireland Research Laboratory, Damastown Industrial Park, Mulhuddart, Dublin, Ireland ; Loukides, G. ; Sun, J.

Healthcare is a major industry in the Smarter Planet initiative of IBM and a key area where analytics can have a substantial impact by improving disease prediction and treatment. To facilitate healthcare analytics, patient data usually need to be widely disseminated. This, however, may risk the disclosure of private and sensitive patient information. In this paper, we illustrate the importance of preserving medical data privacy and the inapplicability of several popular techniques to preserve the privacy of structured medical data. Subsequently, we review a privacy-preserving approach for the dissemination of patient records. This approach involves patient record de-identification, anonymization of diagnosis codes contained in the records, and a method for balancing data utility with privacy. This approach is practical in that it allows healthcare data providers to specify fine-grained privacy and utility requirements, and it is able to construct anonymized data with a desired balance between utility and privacy. The effectiveness of the approach is demonstrated through a case study using electronic medical records. We conclude this paper with a roadmap for future trends in medical data privacy.

Note: The Institute of Electrical and Electronics Engineers, Incorporated is distributing this Article with permission of the International Business Machines Corporation (IBM) who is the exclusive owner. The recipient of this Article may not assign, sublicense, lease, rent or otherwise transfer, reproduce, prepare derivative works, publicly display or perform, or distribute the Article.  

Published in:

IBM Journal of Research and Development  (Volume:58 ,  Issue: 1 )