By Topic

Policy Iteration Algorithm for Online Design of Robust Control for a Class of Continuous-Time Nonlinear Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ding Wang ; State Key Lab. of Manage. & Control for Complex Syst., Inst. of Autom., Beijing, China ; Derong Liu ; Hongliang Li

In this paper, a novel strategy is established to design the robust controller for a class of continuous-time nonlinear systems with uncertainties based on the online policy iteration algorithm. The robust control problem is transformed into the optimal control problem by properly choosing a cost function that reflects the uncertainties, regulation, and control. An online policy iteration algorithm is presented to solve the Hamilton-Jacobi-Bellman (HJB) equation by constructing a critic neural network. The approximate expression of the optimal control policy can be derived directly. The closed-loop system is proved to possess the uniform ultimate boundedness. The equivalence of the neural-network-based HJB solution of the optimal control problem and the solution of the robust control problem is established as well. Two simulation examples are provided to verify the effectiveness of the present robust control scheme.

Published in:

Automation Science and Engineering, IEEE Transactions on  (Volume:11 ,  Issue: 2 )