By Topic

Distributed Energy Efficient Clouds Over Core Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
3 Author(s)
Lawey, A.Q. ; Sch. of Electron. & Electr. Eng., Univ. of Leeds, Leeds, UK ; El-Gorashi, T.E.H. ; Elmirghani, J.M.H.

In this paper, we introduce a framework for designing energy efficient cloud computing services over non-bypass IP/WDM core networks. We investigate network related factors including the centralization versus distribution of clouds and the impact of demand, content popularity and access frequency on the clouds placement, and cloud capability factors including the number of servers, switches and routers and amount of storage required in each cloud. We study the optimization of three cloud services: cloud content delivery, storage as a service (StaaS), and virtual machines (VMS) placement for processing applications. First, we develop a mixed integer linear programming (MILP) model to optimize cloud content delivery services. Our results indicate that replicating content into multiple clouds based on content popularity yields 43% total saving in power consumption compared to power un-aware centralized content delivery. Based on the model insights, we develop an energy efficient cloud content delivery heuristic, DEER-CD, with comparable power efficiency to the MILP results. Second, we extend the content delivery model to optimize StaaS applications. The results show that migrating content according to its access frequency yields up to 48% network power savings compared to serving content from a single central location. Third, we optimize the placement of VMs to minimize the total power consumption. Our results show that slicing the VMs into smaller VMs and placing them in proximity to their users saves 25% of the total power compared to a single virtualized cloud scenario. We also develop a heuristic for real time VM placement (DEER-VM) that achieves comparable power savings.

Published in:

Lightwave Technology, Journal of  (Volume:32 ,  Issue: 7 )