By Topic

Parallelism and pipelining in ultra low voltage digital circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mingoo Seok ; Dept. of Electr. Eng., Columbia Univ., New York, NY, USA ; Zhe Cao

We investigate two important performance-enhancing techniques - pipelining and parallelism - in the context of ultra-low voltage digital circuits. The investigation at near and sub-Vt supply voltages shows that pipelining can provide a superior benefit in throughput and energy-efficiency across a wide range of near and sub-Vt supply voltages while parallelism can provide a less amount of benefits only if the utilization of the circuits is high. Based on this investigation, an FFT core has been designed employing (1) an extensive degree of pipelining and (2) the parallelism with maximal utilization in major building blocks. The developed core demonstrates a significant amount of improvement in energy-efficiency and throughput over the existing near/sub-Vt FFT demonstrations.

Published in:

SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), 2013 IEEE

Date of Conference:

7-10 Oct. 2013