By Topic

Board-Level Functional Fault Diagnosis Using Multikernel Support Vector Machines and Incremental Learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Fangming Ye ; Dept. of Electr. & Comput. Eng., Duke Univ., Durham, NC, USA ; Zhaobo Zhang ; Chakrabarty, K. ; Xinli Gu

Advanced machine learning techniques offer an unprecedented opportunity to increase the accuracy of board-level functional fault diagnosis and reduce product cost through successful repair. Ambiguous or incorrect diagnosis results lead to long debug times and even wrong repair actions, which significantly increase repair cost. We propose a smart diagnosis method based on multikernel support vector machines (MK-SVMs) and incremental learning. The MK-SVM method leverages a linear combination of single kernels to achieve accurate faulty-component classification based on the errors observed. The MK-SVMs thus generated can also be updated based on incremental learning, which allows the diagnosis system to quickly adapt to new error observations and provide even more accurate fault diagnosis. Two complex boards from industry, currently in volume production, are used to validate the proposed diagnosis approach in terms of diagnosis accuracy (success rate) and quantifiable improvements over previously proposed machine-learning methods based on several single-kernel SVMs and artificial neural networks.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:33 ,  Issue: 2 )