By Topic

Designing High Performance Web-Based Computing Services to Promote Telemedicine Database Management System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hababeh, I. ; Fac. of Comput. Eng. & Inf. Technol., German-Jordanian Univ., Amman, Jordan ; Khalil, I. ; Khreishah, A.

Many web computing systems are running real time database services where their information change continuously and expand incrementally. In this context, web data services have a major role and draw significant improvements in monitoring and controlling the information truthfulness and data propagation. Currently, web telemedicine database services are of central importance to distributed systems. However, the increasing complexity and the rapid growth of the real world healthcare challenging applications make it hard to induce the database administrative staff. In this paper, we build an integrated web data services that satisfy fast response time for large scale Tele-health database management systems. Our focus will be on database management with application scenarios in dynamic telemedicine systems to increase care admissions and decrease care difficulties such as distance, travel, and time limitations. We propose three-fold approach based on data fragmentation, database websites clustering and intelligent data distribution. This approach reduces the amount of data migrated between websites during applications' execution; achieves cost-effective communications during applications' processing and improves applications' response time and throughput. The proposed approach is validated internally by measuring the impact of using our computing services' techniques on various performance features like communications cost, response time, and throughput. The external validation is achieved by comparing the performance of our approach to that of other techniques in the literature. The results show that our integrated approach significantly improves the performance of web database systems and outperforms its counterparts.

Published in:

Services Computing, IEEE Transactions on  (Volume:8 ,  Issue: 1 )