Cart (Loading....) | Create Account
Close category search window
 

Multiclass Data Segmentation Using Diffuse Interface Methods on Graphs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Garcia-Cardona, C. ; C. Garcia-Cardona is with the Institute of Mathematical Sciences, Claremont Graduate University, Los Angeles CA USA (e-mail: cristina.cgarcia@gmail.com). ; Merkurjev, E. ; Bertozzi, A. ; Flenner, A.
more authors

We present two graph-based algorithms for multiclass segmentation of high-dimensional data on graphs. The algorithms use a diffuse interface model based on the Ginzburg-Landau functional, related to total variation and graph cuts. A multiclass extension is introduced using the Gibbs simplex, with the functional’s double-well potential modified to handle the multiclass case. The first algorithm minimizes the functional using a convex splitting numerical scheme. The second algorithm uses a graph adaptation of the classical numerical Merriman-Bence-Osher (MBO) scheme, which alternates between diffusion and thresholding. We demonstrate the performance of both algorithms experimentally on synthetic data, image labeling, and several benchmark data sets such as MNIST, COIL and WebKB. We also make use of fast numerical solvers for finding the eigenvectors and eigenvalues of the graph Laplacian, and take advantage of the sparsity of the matrix. Experiments indicate that the results are competitive with or better than the current state-of-the-art in multiclass graph-based segmentation algorithms for high-dimensional data.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:PP ,  Issue: 99 )

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.