Cart (Loading....) | Create Account
Close category search window

Efficient Unknown Tag Identification Protocols in Large-Scale RFID Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Liu, X. ; Xiulong Liu is with the School of Computer Science and Technology, Dalian University of Technology, No 2, Linggong Road, Dalian 116023, China.( ; Li, K. ; Min, G. ; Lin, K.
more authors

Owing to its attractive features such as fast identification and relatively long interrogating range over the classical barcode systems, Radio-Frequency Identification (RFID) technology possesses a promising prospect in many practical applications such as inventory control and supply chain management. However, unknown tags appear in RFID systems when the tagged objects are misplaced or unregistered tagged objects are moved in, which often causes huge economic losses. This paper addresses an important and challenging problem of unknown tag identification in large-scale RFID systems. The existing protocols leverage the Aloha-like schemes to distinguish the unknown tags from known tags at the slot level, which are of low time-efficiency, and thus can hardly satisfy the delay-sensitive applications. To fill in this gap, two filtering-based protocols (at the bit level) are proposed in this paper to address the problem of unknown tag identification efficiently. Theoretical analysis of the protocol parameters is performed to minimize the execution time of the proposed protocols. Extensive simulation experiments are conducted to evaluate the performance of the protocols. The results demonstrate that the proposed protocols significantly outperform the currently most promising protocols.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:PP ,  Issue: 99 )

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.