By Topic

Distortion-Fair Cross-Layer Resource Allocation for Scalable Video Transmission in OFDMA Wireless Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sergio Cicalò ; Eng. Dept., Univ. of Ferrara, Ferrara, Italy ; Velio Tralli

The design of optimized video delivery to multiple users over a wireless channel is a challenging task, especially when the objectives of maximizing the spectral efficiency and providing a fair video quality have to be jointly considered. In this paper we propose a novel cross-layer optimization framework for scalable video delivery over OFDMA wireless networks. It jointly addresses rate adaptation and resource allocation with the aim of maximizing the sum of the achievable rates while minimizing the distortion difference among multiple videos. After having discussed the feasibility of the optimization problem, we consider a “vertical” decomposition of it and propose the iterative local approximation (ILA) algorithm to derive the optimal solution. The ILA algorithm requires a limited information exchange between the application and the MAC layers, which independently run algorithms that handle parameters and constraints characteristic of a single layer. In order to reduce the overall complexity and the latency of the optimal algorithm, we also propose suboptimal strategies based on the first-step of the ILA algorithm and on the use of stochastic approximations at the MAC layer. Our numerical evaluations show the fast convergence of the ILA algorithm and the resulting small gap in terms of efficiency and video quality fairness between optimal and suboptimal strategies. Moreover, significant individual PSNR gains, up to 7 dB for high-complexity videos in the investigated scenario, are obtained with respect to other state-of-the-art frameworks with similar complexity.

Published in:

IEEE Transactions on Multimedia  (Volume:16 ,  Issue: 3 )