By Topic

GASPAD: A General and Efficient mm-Wave Integrated Circuit Synthesis Method Based on Surrogate Model Assisted Evolutionary Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bo Liu ; Dept. of Comput., Glyndwr Univ., Wrexham, UK ; Dixian Zhao ; Reynaert, P. ; Gielen, G.G.E.

The design and optimization (both sizing and layout) of mm-wave integrated circuits (ICs) have attracted much attention due to the growing demand in industry. However, available manual design and synthesis methods suffer from a high dependence on design experience, being inefficient or not general enough. To address this problem, a new method, called general mm-wave IC synthesis based on Gaussian process model assisted differential evolution (GASPAD), is proposed in this paper. A medium-scale computationally expensive constrained optimization problem must be solved for the targeted mm-wave IC design problem. Besides the basic techniques of using a global optimization algorithm to obtain highly optimized design solutions and using surrogate models to obtain a high efficiency, a surrogate model-aware search mechanism (SMAS) for tackling the several tens of design variables (medium scale) and a method to appropriately integrate constraint handling techniques into SMAS for tackling the multiple (high-) performance specifications are proposed. Experiments on two 60 GHz power amplifiers in a 65 nm CMOS technology and two mathematical benchmark problems are carried out. Comparisons with the state-of-art provide evidence of the important advantages of GASPAD in terms of solution quality and efficiency.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:33 ,  Issue: 2 )