By Topic

Robust Face Recognition From Multi-View Videos

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ming Du ; Center for Autom. Res., Univ. of Maryland, College Park, MD, USA ; Sankaranarayanan, A.C. ; Chellappa, R.

Multiview face recognition has become an active research area in the last few years. In this paper, we present an approach for video-based face recognition in camera networks. Our goal is to handle pose variations by exploiting the redundancy in the multiview video data. However, unlike traditional approaches that explicitly estimate the pose of the face, we propose a novel feature for robust face recognition in the presence of diffuse lighting and pose variations. The proposed feature is developed using the spherical harmonic representation of the face texture-mapped onto a sphere; the texture map itself is generated by back-projecting the multiview video data. Video plays an important role in this scenario. First, it provides an automatic and efficient way for feature extraction. Second, the data redundancy renders the recognition algorithm more robust. We measure the similarity between feature sets from different videos using the reproducing kernel Hilbert space. We demonstrate that the proposed approach outperforms traditional algorithms on a multiview video database.

Published in:

Image Processing, IEEE Transactions on  (Volume:23 ,  Issue: 3 )
Biometrics Compendium, IEEE