By Topic

Physical Model Analysis During Transient for Series-Connected HVIGBTs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Shiqi Ji ; Dept. of Electr. Eng., Tsinghua Univ., Beijing, China ; Ting Lu ; Zhengming Zhao ; Hualong Yu
more authors

Obvious differences are observed between simulation and experimental results for series-connected insulated-gate bipolar transistors (IGBTs) using current IGBT models. Here, the cause of these errors is analyzed in detail. A physical model based on more effective assumptions for a 2-D structure is proposed in this paper. The relationship between carrier concentration and lifetime is considered in the model in order to achieve an accurate description for excess carrier distribution. Testing was performed in a buck converter using series-connected non-punch-through (NPT) planar-gate 6500 V/600 A high-voltage IGBTs (HVIGBTs) at various bus voltages using an asynchronous control signal. The accuracy of HVIGBT transient model is verified by comparing experimental and simulation results in buck converters using two and three series-connected IGBTs. The function of the RC snubber circuit is also evaluated using the proposed model.

Published in:

Power Electronics, IEEE Transactions on  (Volume:29 ,  Issue: 11 )