Cart (Loading....) | Create Account
Close category search window

Light Trapping in Thin Crystalline Si Solar Cells Using Surface Mie Scatterers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Spinelli, P. ; Center for Nanophotonics, FOM Inst., Amsterdam, Netherlands ; Polman, A.

Dielectric nanoparticles placed on top of a thin-film solar cell strongly enhance light absorption in the cell over a broad spectral range due to the preferential forward scattering of light from leaky Mie resonances in the particle. In this study, we systematically study with numerical simulations the absorption of light into thin (1-100 μm) crystalline Si solar cells patterned with Si nanocylinder arrays on top of the cell. We then use an analytical model to calculate the solar cell efficiency, based on the simulated absorption spectra. Using realistic values for bulk and surface recombination rates, we find that a 20-μm-thick Si solar cell with 21.5% efficiency can be made by using the Si nanocylinder Mie coating.

Published in:

Photovoltaics, IEEE Journal of  (Volume:4 ,  Issue: 2 )

Date of Publication:

March 2014

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.