By Topic

BBZ_{2}BBZ_{4} -Additive Cyclic Codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Taher Abualrub ; Dept. of Math. & Stat., American Univ. of Sharjah, Sharjah, United Arab Emirates ; Irfan Siap ; Nuh Aydin

In this paper, we study Z2Z4-additive cyclic codes. These codes are identified as Z4[x]-submodules of the ring Rr,s=Z2[x]/〈xr-1〉×Z4[x]/〈xs-1〉. The algebraic structure of this family of codes is studied and a set of generator polynomials for this family as a Z4[x]-submodule of the ring Rr,s is determined. We show that the duals of Z2Z4-additive cyclic codes are also cyclic. We also present an infinite family of Maximum Distance separable with respect to the singleton bound codes. Finally, we obtain a number of binary linear codes with optimal parameters from the Z2Z4-additive cyclic codes.

Published in:

IEEE Transactions on Information Theory  (Volume:60 ,  Issue: 3 )