By Topic

A Strictly Convex Hull for Computing Proximity Distances With Continuous Gradients

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Adrien Escande ; Centre Nat. de la Rech. Sci., Nat. Inst. for Adv. Ind. Res. & Technol., Tsukuba, Japan ; Sylvain Miossec ; Mehdi Benallegue ; Abderrahmane Kheddar

We propose a new bounding volume that achieves a tunable strict convexity of a given convex hull. This geometric operator is named sphere-tori-patches bounding volume (STP-BV), which is the acronym for the bounding volume made of patches of spheres and tori. The strict convexity of STP-BV guarantees a unique pair of witness points and at least C1 continuity of the distance function resulting from a proximity query with another convex shape. Subsequently, the gradient of the distance function is continuous. This is useful for integrating distance as a constraint in robotic motion planners or controllers using smooth optimization techniques. For the sake of completeness, we compare performance in smooth and nonsmooth optimization with examples of growing complexity when involving distance queries between pairs of convex shapes.

Published in:

IEEE Transactions on Robotics  (Volume:30 ,  Issue: 3 )