By Topic

Concurrent Single-Label Image Classification and Annotation via Efficient Multi-Layer Group Sparse Coding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Shenghua Gao ; Adv. Digital Sci. Center, Singapore, Singapore ; Liang-Tien Chia ; Tsang, I.W.-H. ; Zhixiang Ren

We present a multi-layer group sparse coding framework for concurrent single-label image classification and annotation. By leveraging the dependency between image class label and tags, we introduce a multi-layer group sparse structure of the reconstruction coefficients. Such structure fully encodes the mutual dependency between the class label, which describes image content as a whole, and tags, which describe the components of the image content. Therefore we propose a multi-layer group based tag propagation method, which combines the class label and subgroups of instances with similar tag distribution to annotate test images. To make our model more suitable for nonlinear separable features, we also extend our multi-layer group sparse coding in the Reproducing Kernel Hilbert Space (RKHS), which further improves performances of image classification and annotation. Moreover, we also integrate our multi-layer group sparse coding with kNN strategy, which greatly improves the computational efficiency. Experimental results on the LabelMe, UIUC-Sports and NUS-WIDE-Object databases show that our method outperforms the baseline methods, and achieves excellent performances in both image classification and annotation tasks.

Published in:

Multimedia, IEEE Transactions on  (Volume:16 ,  Issue: 3 )