Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Large-Scale Sensing System Combining Large-Area Electronics and CMOS ICs for Structural-Health Monitoring

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)

Early-stage damage detection for bridges requires continuously sensing strain over large portions of the structure, yet with centimeter-scale resolution. To achieve sensing on such a scale, this work presents a sensing sheet that combines CMOS ICs, for sensor control and readout, with large-area electronics (LAE), for many-channel distributed sensing and data aggregation. Bonded to a structure, the sheet thus enables strain sensing scalable to high spatial resolutions. In order to combine the two technologies in a correspondingly scalable manner, non-contact interfaces are used. Inductive and capacitive antennas are patterned on the LAE sheet and on the IC packages, so that system assembly is achieved via low-cost sheet lamination without metallurgical bonds. The LAE sheet integrates thin-film strain gauges, thin-film transistors, and long interconnects on a 50-μm-thick polyimide sheet, and the CMOS ICs integrate subsystems for sensor readout, control, and communication over the distributed sheet in a 130 nm process. Multi-channel strain readout is achieved with sensitivity of 18 μStrain RMS at a readout energy of 270 nJ/measurement, while the communication energy is 12.8 pJ/3.3 pJ per bit (Tx/Rx) over a distance of 7.5 m.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:49 ,  Issue: 2 )