By Topic

Automatic test pattern generation for crosstalk glitches in digital circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kyung Tek Lee ; Comput. Eng. Res. Center, Texas Univ., Austin, TX, USA ; C. Nordquist ; J. A. Abraham

As clock speeds of current deep submicron design technologies increase over 1 GHz and metal line spacings narrow, unexpected crosstalk effects start to degrade the circuit performance significantly. It is important for the designer to test the effects before taping out the designs. Unfortunately, conventional tests for stuck-at or delay faults are not guaranteed to expose potential crosstalk effects. This paper presents an efficient methodology for generating test vectors to detect crosstalk glitch effects in digital circuits. The ATEG (Automatic Test Extractor for Glitch) algorithm uses the multiple backrace technique, and uses a “forward-evaluation” technique in its backtacking phase which searches for the “right” entry to select by propagating “suggested values” to minimize the number of backtracks. In the glitch propagation phase, we employ a criterion function which gives a metric for determining the propagation of a transitional signal at a given gate. Our experiments show that ATEG efficiently generates test vectors to create glitches at candidate nodes

Published in:

VLSI Test Symposium, 1998. Proceedings. 16th IEEE

Date of Conference:

26-30 Apr 1998