By Topic

Learning and Recognition of On-Premise Signs From Weakly Labeled Street View Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Tsung-Hung Tsai ; Res. Center for Inf. Technol. Innovation, Taipei, Taiwan ; Wen-Huang Cheng ; Chuang-Wen You ; Min-Chun Hu
more authors

Camera-enabled mobile devices are commonly used as interaction platforms for linking the user's virtual and physical worlds in numerous research and commercial applications, such as serving an augmented reality interface for mobile information retrieval. The various application scenarios give rise to a key technique of daily life visual object recognition. On-premise signs (OPSs), a popular form of commercial advertising, are widely used in our living life. The OPSs often exhibit great visual diversity (e.g., appearing in arbitrary size), accompanied with complex environmental conditions (e.g., foreground and background clutter). Observing that such real-world characteristics are lacking in most of the existing image data sets, in this paper, we first proposed an OPS data set, namely OPS-62, in which totally 4649 OPS images of 62 different businesses are collected from Google's Street View. Further, for addressing the problem of real-world OPS learning and recognition, we developed a probabilistic framework based on the distributional clustering, in which we proposed to exploit the distributional information of each visual feature (the distribution of its associated OPS labels) as a reliable selection criterion for building discriminative OPS models. Experiments on the OPS-62 data set demonstrated the outperformance of our approach over the state-of-the-art probabilistic latent semantic analysis models for more accurate recognitions and less false alarms, with a significant 151.28% relative improvement in the average recognition rate. Meanwhile, our approach is simple, linear, and can be executed in a parallel fashion, making it practical and scalable for large-scale multimedia applications.

Published in:

Image Processing, IEEE Transactions on  (Volume:23 ,  Issue: 3 )