Cart (Loading....) | Create Account
Close category search window

Spectral–Spatial Preprocessing Using Multihypothesis Prediction for Noise-Robust Hyperspectral Image Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Chen Chen ; Dept. of Electr. Eng., Univ. of Texas at Dallas, Richardson, TX, USA ; Wei Li ; Tramel, E.W. ; Minshan Cui
more authors

Spectral-spatial preprocessing using multihypothesis prediction is proposed for improving accuracy of hyperspectral image classification. Specifically, multiple spatially collocated pixel vectors are used as a hypothesis set from which a prediction for each pixel vector of interest is generated. Additionally, a spectral-band-partitioning strategy based on inter-band correlation coefficients is proposed to improve the representational power of the hypothesis set. To calculate an optimal linear combination of the hypothesis predictions, a distance-weighted Tikhonov regularization to an ill-posed least-squares optimization is used. The resulting predictions effectively integrate spectral and spatial information and thus are used during classification in lieu of the original pixel vectors. This processed hyperspectral image dataset has less intraclass variability and more spatial regularity as compared to the original dataset. Classification results for two hyperspectral image datasets demonstrate that the proposed method can enhance the classification accuracy of both maximum-likelihood and support vector classifiers, especially under small sample size constraints and noise corruption.

Published in:

Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of  (Volume:7 ,  Issue: 4 )

Date of Publication:

April 2014

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.