By Topic

Detailed Current Loss Analysis for a PV Module Made With Textured Multicrystalline Silicon Wafer Solar Cells

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Peters, I.M. ; Solar Energy Res. Inst. of Singapore, Singapore, Singapore ; Yong Sheng Khoo ; Walsh, T.M.

We present a top-down method to quantify optical losses due to encapsulation of textured multicrystalline silicon wafer solar cells in a photovoltaic module. The approach is based on a combination of measurements and mathematical procedures. Seven different loss mechanisms are considered: 1) reflection at the glass front surface, 2) reflection at the metal fingers, 3) reflection at the textured solar cell surface, 4) absorption in the antireflection coating, 5) absorption in the glass pane and the encapsulation layer, 6) front surface escape, and 7) losses due to a non-perfect solar cell internal quantum efficiency. Losses for each of these mechanisms are obtained as a function of wavelength, and the corresponding current loss for each loss mechanism is calculated. Comparing simulated and measured results, the method predicts the module quantum efficiency with an error of less than 2% and the collected current with an error of less than 1%. In the presented example, the biggest loss (7.4 mA/cm 2) is due to the nonperfect quantum efficiency, followed by reflection losses at the glass front (2.2 mA/cm 2) and absorption in the glass and encapsulation layer (1.1 mA/cm 2).

Published in:

Photovoltaics, IEEE Journal of  (Volume:4 ,  Issue: 2 )