By Topic

Sensor validation using hardware-based on-line learning neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
M. R. Napolitano ; Dept. of Mech. & Aerosp. Eng., West Virginia Univ., Morgantown, WV, USA ; G. Silvestri ; D. A. Windon ; J. L. Casanova
more authors

The objective of this document Is to show the capabilities of parallel hardware-based on-line learning neural networks (NNs). This specific application is related to an on-line estimation problem for sensor validation purposes. Neural-network-based microprocessors are starting to be commercially available. However, most of them feature a learning performed with the classic back-propagation algorithm (BPA). To overcome this lack of flexibility a customized motherboard with transputers was implemented for this investigation, The extended BPA (EBPA), a modified and more effective BPA, was used for the on-line learning, These parallel hardware-based neural architectures were used to implement a sensor failure detection, identification, and accommodation scheme in the model of a night control system assumed to be without physical redundancy in the sensory capabilities. The results of this study demonstrate the potential for these neural schemes for implementation in actual flight control systems of modern high performance aircraft, taking advantage of the characteristics of the extended back-propagation along with the parallel computation capabilities of NN customized hardware

Published in:

IEEE Transactions on Aerospace and Electronic Systems  (Volume:34 ,  Issue: 2 )