Cart (Loading....) | Create Account
Close category search window
 

Superconducting 4–8-GHz Hybrid Assembly for 2SB Cryogenic THz Receivers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Rashid, H. ; Group of Adv. Receiver Dev. (GARD), Chalmers Univ. of Technol., Gothenburg, Sweden ; Meledin, D. ; Desmaris, V. ; Pavolotsky, A.
more authors

We present here the design and characterization of an intermediate frequency (IF) assembly comprising a compact 90° hybrid chip (coupled line coupler - Lange coupler- coupled line coupler), two bias-T circuits for biasing the superconductor-insulator-superconductor (SIS) mixers, and two transmission-line circuits. Specifically, the miniaturized three-section hybrid chip fabricated using thin-film technology utilizes superconducting Niobium (Nb) transmission lines, air bridges to connect the fingers of the Lange coupler (middle section), and is complemented with two bias-T circuits with integrated MIM capacitors. The assembly was designed to ensure amplitude and phase imbalances better than 0.6 dB and ±2°, respectively. Experimental verification of the assembly at 4 K shows good agreement between the measurements and simulations with amplitude imbalance of 0.5 dB and maximum phase imbalance of ±2°. The ALMA band-5 (163-211 GHz) receiver will include such assembly. The receiver tests shows sideband rejection ratio better than 15 dB over the entire RF band, i.e., a systematic improvement of 3-9 dB as compared with the previously reported results.

Published in:

Terahertz Science and Technology, IEEE Transactions on  (Volume:4 ,  Issue: 2 )

Date of Publication:

March 2014

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.