Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Super-Resolution for Computed Tomography Based on Discrete Tomography

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
van Aarle, W. ; iMindsVisionlab, Univ. of Antwerp, Antwerp, Belgium ; Batenburg, K.J. ; Van Gompel, G. ; Van de Casteele, E.
more authors

In computed tomography (CT), partial volume effects impede accurate segmentation of structures that are small with respect to the pixel size. In this paper, it is shown that for objects consisting of a small number of homogeneous materials, the reconstruction resolution can be substantially increased without altering the acquisition process. A super-resolution reconstruction approach is introduced that is based on discrete tomography, in which prior knowledge about the materials in the object is assumed. Discrete tomography has already been used to create reconstructions from a low number of projection angles, but in this paper, it is demonstrated that it can also be applied to increase the reconstruction resolution. Experiments on simulated and real μCT data of bone and foam structures show that the proposed method indeed leads to significantly improved structure segmentation and quantification compared with what can be achieved from conventional reconstructions.

Published in:

Image Processing, IEEE Transactions on  (Volume:23 ,  Issue: 3 )