By Topic

Inferring categories to accelerate the learning of new classes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Robert Goeddel ; Dept. of Comput. Sci. & Eng., Univ. of Michigan, Ann Arbor, MI, USA ; Edwin Olson

On-the-fly learning systems are necessary for the deployment of general purpose robots. New training examples for such systems are often supplied by mentor interactions. Due to the cost of acquiring such examples, it is desirable to reduce the number of necessary interactions. Transfer learning has been shown to improve classification results for classes with small numbers of training examples by pooling knowledge from related classes. Standard practice in these works is to assume that the relationship between the transfer target and related classes is already known. In this work, we explore how previously learned categories, or related groupings of classes, can be used to transfer knowledge to novel classes without explicitly known relationships to them. We demonstrate an algorithm for determining the category membership of a novel class, focusing on the difficult case when few training examples are available. We show that classifiers trained via this method outperform classifiers optimized to learn the novel class individually when evaluated on both synthetic and real-world datasets.

Published in:

2013 IEEE/RSJ International Conference on Intelligent Robots and Systems

Date of Conference:

3-7 Nov. 2013