By Topic

Visual servo control of cable-driven soft robotic manipulator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Hesheng Wang ; Dept. of Autom., Shanghai Jiao Tong Univ., Shanghai, China ; Weidong Chen ; Xiaojin Yu ; Tao Deng
more authors

Aim at enhancing dexterous and safe operation in unstructured environment, a cable-driven soft robotic manipulator is designed in this paper. Due to soft material it made of and nearly infinite degree of freedom it owns, the soft robotic manipulator has higher security and dexterity than traditional rigid-link manipulator, which make it suitable to perform tasks in complex environments that is narrow, confined and unstructured. Though the soft robotic manipulator possesses advantages above, it is not an easy thing for it to achieve precise position control. In order to solve this problem, a kinematic model based on piecewise constant curvature hypothesis is proposed. Through building up three spaces and two mappings, the relationship between the length variables of 4 cables and the position and orientation of the soft robotic manipulator end-effector is obtained. Afterwards, a depth-independent image Jacobian matrix is introduced and an image-based visual servo controller is presented. Applied by adaptive algorithm, the controller could estimate unknown position of the feature point online, and then Lyapunov theory is used to prove the stability of the proposed controller. At last, experiments are conducted to demonstrate rationality and validity of the kinematic model and adaptive visual servo controller.

Published in:

2013 IEEE/RSJ International Conference on Intelligent Robots and Systems

Date of Conference:

3-7 Nov. 2013