By Topic

Energetic electron and ion beam generation in plasma opening switches

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Krasik, Y.E. ; Dept. of Phys., Weizmann Inst. of Sci., Rehovot, Israel ; Weingarten, A.

In this paper, we present measurements of ion and electron flows in a nanosecond plasma opening switch (NPOS) and a microsecond plasma opening switch (MPOS), performed using charge collectors. In both experiments, an electron flow toward the anode, followed by an ion flow, were observed to propagate downstream toward the load side of the plasma during the plasma opening switch (POS) conduction. In the MPOS, ion acceleration was observed to propagate axially through the entire plasma. These results are in satisfactory agreement with the predictions of the electron magnetohydrodynamics (EHMD) theory and the results of fluid and particle-in-cell (PIC) code simulations. At the beginning of the POS opening, a high-current density (≈2 kA/cm2) short-duration (10-30 ns) axial ion flow downstream toward the load was observed in both experiments, with an electron beam in front of it. These ions are accelerated at the load side of the plasma and are accompanied by comoving electrons. In the NPOS, the ion energy reaches 1.35 MeV, whereas in the MPOS, the ion energy does not exceed 100 keV. We suggest that in the NPOS the dominant mechanism for the axial ion acceleration is collective acceleration by the space charge of the electron beam, while in the MPOS, axial ion acceleration is probably governed by the Hall field in the current carrying plasma

Published in:

Plasma Science, IEEE Transactions on  (Volume:26 ,  Issue: 2 )