By Topic

Support-theoretic subgraph preconditioners for large-scale SLAM

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yong-Dian Jian ; Georgia Inst. of Technol., Atlanta, GA, USA ; Balcan, D. ; Panageas, I. ; Tetali, P.
more authors

Efficiently solving large-scale sparse linear systems is important for robot mapping and navigation. Recently, the subgraph-preconditioned conjugate gradient method has been proposed to combine the advantages of two reigning paradigms, direct and iterative methods, to improve the efficiency of the solver. Yet the question of how to pick a good subgraph is still an open problem. In this paper, we propose a new metric to measure the quality of a spanning tree preconditioner based on support theory. We use this metric to develop an algorithm to find good subgraph preconditioners and apply them to solve the SLAM problem. The results show that although the proposed algorithm is not fast enough, the new metric is effective and resulting subgraph preconditioners significantly improve the efficiency of the state-of-the-art solver.

Published in:

Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on

Date of Conference:

3-7 Nov. 2013