By Topic

Quantizability and learning complexity in multilayer neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Limin Fu ; Dept. of Comput. & Inf. Sci., Florida Univ., Gainesville, FL, USA

The relationship between quantizability and learning complexity in multilayer neural networks is examined. In a special neural network architecture that calculates node activations according to the certainty factor (CF) model of expert systems, the analysis based upon quantizability leads to lower and also better estimates for generalization dimensionality and sample complexity than those suggested by the multilayer perceptron model. This analysis is further supported by empirical simulation results

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:28 ,  Issue: 2 )