By Topic

An evidence-theoretic k-NN rule with parameter optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zouhal, L.M. ; Univ. de Technol. de Compiegne, France ; Denoeux, T.

The paper presents a learning procedure for optimizing the parameters in the evidence-theoretic k-nearest neighbor rule, a pattern classification method based on the Dempster-Shafer theory of belief functions. In this approach, each neighbor of a pattern to be classified is considered as an item of evidence supporting certain hypotheses concerning the class membership of that pattern. Based on this evidence, basic belief masses are assigned to each subset of the set of classes. Such masses are obtained for each of the k-nearest neighbors of the pattern under consideration and aggregated using Dempster's rule of combination. In many situations, this method was found experimentally to yield lower error rates than other methods using the same information. However, the problem of tuning the parameters of the classification rule was so far unresolved. The authors determine optimal or near-optimal parameter values from the data by minimizing an error function. This refinement of the original method is shown experimentally to result in substantial improvement of classification accuracy

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:28 ,  Issue: 2 )