By Topic

Nonlinear system modeling by competitive learning and adaptive fuzzy inference system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jian-Qin Chen ; Inst. of Autom., Shanghai Jiaotong Univ., China ; Yu-Geng Xi

Modeling nonlinear systems by neural networks and fuzzy systems encounters problems such as the conflict between overfitting and good generalization and low reliability, which requires a great number of fuzzy rules or neural nodes and uses very complicated learning algorithms. A new adaptive fuzzy inference system, combined with a learning algorithm, is proposed to cope with these problems. First, the algorithm partitions the input space into some local regions by competitive learning, then it determines the decision boundaries for local input regions, and finally, based on the decision boundaries, it learns the fuzzy rule for each local region by recursive least squares (RLS). In the learning algorithm, the key role of the decision boundaries is highly emphasized. To demonstrate the validity of the proposed learning approach and the new adaptive fuzzy inference system, four examples are studied by the proposed method and compared with the previous results

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)  (Volume:28 ,  Issue: 2 )