By Topic

Monte Carlo simulation of electron transport properties in extremely thin SOI MOSFET's

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Gamiz, F. ; Dept. de Electron. y Tecnologia de Computadores, Granada Univ., Spain ; Lopez-Villanueva, J.A. ; Roldan, J.B. ; Carceller, J.E.
more authors

Electron mobility in extremely thin-film silicon-on-insulator (SOI) MOSFET's has been simulated. A quantum mechanical calculation is implemented to evaluate the spatial and energy distribution of the electrons. Once the electron distribution is known, the effect of a drift electric field parallel to the Si-SiO2 interfaces is considered. The Boltzmann transport equation is solved by the Monte Carlo method. The contribution of phonon, surface-roughness at both interfaces, and Coulomb scattering has been considered. The mobility decrease that appears experimentally in devices with a silicon film thickness under 20 nm is satisfactorily explained by an increase in phonon scattering as a consequence of the greater confinement of the electrons in the silicon film

Published in:

Electron Devices, IEEE Transactions on  (Volume:45 ,  Issue: 5 )