By Topic

AND/OR net representation for robotic task sequence planning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cao, T. ; Corp. Manuf. Syst., Motorola Inc., Schaumburg, IL, USA ; Sanderson, A.C.

The paper describes a framework for task sequence planning for a generalized robotic work cell. The AND/OR net provides a compact, distributed, domain-specific representation of geometric configurations of parts and devices in the work cell. The approach maintains a correspondence from geometric state information to task and motion plans and on-line discrete-event control that is not available in traditional action-based planners. The feasibility criteria for each AND/OR net transition guide the geometric reasoning required in the planning of feasible sequences. The resulting search space for plans is often much smaller (due to explicit representation of geometric constraints) than the state space of an action-based task planner. For purposes of analysis, the AND/OR net is mapped into a Petri net and the resulting Petri net is shown to be bounded and have guaranteed properties of liveness, safeness, and reversibility. In this form, the AND/OR net may be viewed as a Petri net synthesis tool in which the resulting Petri net representation may be used for on-line scheduling and control of the system

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:28 ,  Issue: 2 )