By Topic

A neural network based fuzzy set model for organizational decision making

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wang, S. ; Fac. of Bus., New Brunswick Univ., St. John, NB, Canada ; Archer, N.P.

A neural network based fuzzy set model is proposed to support organizational decision making under uncertainty. This model incorporates three theories and methodologies: classical decision-making theory under conflict, as suggested by Luce and Raiffa (1957), the fuzzy set theory of Zadeh (1965, 1984), and a modified version of the backpropagation (BP) neural network algorithm originated by Rumelhart et al. (1986). An algorithm that implements the model is described, and an application of the model to a real data example is used to demonstrate its use

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:28 ,  Issue: 2 )