By Topic

Thermal effects and scaling in organic light-emitting flat-panel displays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sturm, J.C. ; Dept. of Electr. Eng., Princeton Univ., NJ, USA ; Wilson, W. ; Iodice, M.

The temperature rise in flat-panel displays without forced air cooling has been both modeled and experimentally measured as a function of the display size. Both radiation and convection are important processes for the transfer of heat to the ambient. Because of much poorer convection and the lack of lateral heat transport at large dimensions, for a fixed power density large displays are expected to be substantially hotter than small displays. This could adversely impact the reliability of large displays based on organic light-emitting diode (OLED) technology

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:4 ,  Issue: 1 )