By Topic

On the hinge-finding algorithm for hingeing hyperplanes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pucar, P. ; Saab Aerospace-Gripen, Linkoping, Sweden ; Sjoberg, J.

This correspondence concerns the estimation algorithm for hinging hyperplane (HH) models, a piecewise-linear model for approximating functions of several variables, suggested in Breiman (1993). The estimation algorithm is analyzed and it is shown that it is a special case of a Newton algorithm applied to a sum of squared error criterion. This insight is then used to suggest possible improvements of the algorithm so that convergence to a local minimum can be guaranteed. In addition, the way of updating the parameters in the HH model is discussed. In Breiman, a stepwise updating procedure is proposed where only a subset of the parameters are changed in each step. This connects closely to some previously suggested greedy algorithms and these greedy algorithms are discussed and compared to a simultaneous updating of all parameters

Published in:

Information Theory, IEEE Transactions on  (Volume:44 ,  Issue: 3 )