By Topic

Microstructured Tube-Leaky Glass Waveguide for Delivery of High-Powered Er:Yag Laser

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kobayashi, S. ; Grad. Sch. of Eng., Tohoku Univ., Sendai, Japan ; Katagiri, T. ; Matsuura, Y.

We present tube-leaky fiber with microstructured glass supports as a hollow core microstructured optical fiber. Attenuation constants of tube-leaky fibers are derived by using a ray optic method and designed the wall thickness of the fibers for Er:YAG laser which is often used for medical applications. From the loss measurements of Er:YAG laser, the tube-leaky fibers supported by microstructured glass made of borosilicate-glass can deliver laser with 0.85 dB/m despite of high material absorption around laser wavelength. The high power energy transmission results of the fabricated fibers are at the order of 80-120 mJ. These energies are enough to ablate biological tissues in surgical operations.

Published in:

Lightwave Technology, Journal of  (Volume:32 ,  Issue: 5 )