By Topic

Hoodsquare: Modeling and Recommending Neighborhoods in Location-Based Social Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zhang, A.X. ; Dept. of Electr. Eng. & Comput. Sci., Massachusetts Inst. of Technol., Cambridge, MA, USA ; Noulas, A. ; Scellato, S. ; Mascolo, C.

Information garnered from activity on location-based social networks can be harnessed to characterize urban spaces and organize them into neighborhoods. We represent geographic points in the city using spatio-temporal information about Foursquare user check-ins and semantic information about places, with the goal of developing features to input into a novel neighborhood detection algorithm. The algorithm first employs a similarity metric that assesses the homogeneity of a geographic area, and then with a simple mechanism of geographic navigation, it detects the boundaries of a city's neighborhoods. The models and algorithms devised are subsequently integrated into a publicly available, map-based tool named Hood square that allows users to explore activities and neighborhoods in cities around the world. Finally, we evaluate Hood square in the context of are commendation application where user profiles are matched to urban neighborhoods. By comparing with a number of baselines, we demonstrate how Hood square can be used to accurately predict the home neighborhood of Twitter users. We also show that we are able to suggest neighborhoods geographically constrained in size, a desirable property in mobile recommendation scenarios for which geographical precision is key.

Published in:

Social Computing (SocialCom), 2013 International Conference on

Date of Conference:

8-14 Sept. 2013