By Topic

Using Stochastic Models to Predict User Response in Social Media

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tad Hogg ; Inst. for Mol. Manuf., Palo Alto, CA, USA ; Kristina Lerman ; Laura M. Smith

User response to contributed content in online social media depends on many factors. These include how the site lays out new content, how frequently the user visits the site, how many friends the user follows, how active these friends are, as well as how interesting or useful the content is to the user. We present a stochastic modeling framework that relates a user's behavior to details of the site's user interface and user activity and describe a procedure for estimating model parameters from available data. We apply the model to study discussions of controversial topics on Twitter, specifically, to predict how followers of an advocate for a topic respond to the advocate's posts. We show that a model of user behavior that explicitly accounts for a user discovering the advocate's post by scanning through a list of newer posts, better predicts response than models that do not.

Published in:

Social Computing (SocialCom), 2013 International Conference on

Date of Conference:

8-14 Sept. 2013